Microworld

world of amoeboid organisms

Menu
Menu

Difflugia acuminata, D. pyriformis, D. labiosa, D. nodosa, D. urceolata, D. scalpellum, D. varians
 
From left to right: D. acuminata, D. pyriformis, D. labiosa, D. nodosa, D. urceolata, D. scalpellum, D. varians (all on scale)
 
 

Genus Difflugia Leclerc, 1815

Diagnosis: Testate amoeba with an agglutinate shell, with a terminal aperture that is round, oval, lobed or toothed, but never slit-like, sometimes with a collar or necklace but never with an internal diaphragm. The test or shell is composed of mineral particles, like quartz fragments, or diatom frustules, collectively called xenosomes, that are assembled on structured or sheet-like organic cement. All known Difflugia species acquire their xenosomes from their environment. Many select and arrange these xenosomes according to their size and shape in order to construct a shell with a morphology that is unique to that particular species. The nucleus is usually ovular, but in larger species vesicular. Some species are multinucluated. Some of the larger freshwater  species, living in deeper waters, contain green endosymbionts or zoochlorellae.

Type species: D. proteiformis Lamarck, 1816, but its nature is questionable (Ogden and Ellison, 1988).

Difflugia scheme

The drawing on the right shows the main characteristics of a Difflugia, in this case of D. capreolata. Its pseudopodia are finger-shaped and therefore called lobopodia. They can have different shapes: a stretching pseudopodium, b retracting, c branching and d broad so-called lamellipodium.

 

Remarks: Difflugia is the oldest and most species-rich genus of testate amoebae, with more than 300 species and a lot of subspecies and varieties. Therefore it is called an overcrowded genus (Meisterfeld). However many descriptions are inadequate, based on artificial criteria, one or few specimens, very small variations in size, shape, color and shell material or the lack of data on natural variation of shell characters. As the test is often opaque, cytoplasmic characters as shape and structure of the nucleus are rarely used. Identification at species level is for most species extremely difficult. The problem is not only which characters are distinguishable, but also which are diagnostic? Many times even slight deviations in shell shape have resulted in the establishment of new forms or species, regardless of the range of variability that individual Difflugia taxa may exhibit (Mazei and Warren, 2012). Gauthier-Lièvre and Thomas (1958) divided the genus into ten groups based on the morphology of the shell: lobed, collared, compressed, urceolate, globose, ovoid-globose, elongate, acute angled, horned  and pyriform. Mazei and Warren (2012, 2014) have classified species in species complexes, primarily based on two collections: Penard’s mounted microscope slides and Ogden’s SEM micrographs, both in the Natural History Museum in London.

Ecological conditions play an important role in shell morphology. Bobrov et al. (1999) observed a clear decrease of shell size moving from wet to dry conditions in three different species groups. And spined forms within the genera Euglypha and Placocista consistently occurred in wetter habitats whereas spineless forms, or those with short spines, were more prevalent in drier habitats. They concluded that, in order to maximize the ecological indicator value of the assemblages recorded, identifications should be made at the lowest taxonomic rank possible within these groups.
Difflugia species inhabit very diverse habitats. Many species are common in freshwater sediments or between water plants; others are planktonic with a benthic phase during winter; some live in dry mosses and soil. Lakes of different trophic status (eutrophic, dystrophic or oligotrophic) have characteristic dominant Difflugia species.

Feeding: mainly algae and fungi. Small species like D. minuta or D.  pulex can use bacteria too.

 

 

Recent posts

Kibisidytes

K. marinus, after Jepps, 1934 Kibisidytes marinus Jepps, 1934 Diagnosis: Small amoeboid organism occurring in the sea, attached to the surface film or to some

Read More »

Phaeobola

P. aeris from Dumack et al., 2000 Phaeobola Dumack et al., 2000 Diagnosis: Cells roundish to oval shaped. Shell colorless to amber-colored, rough surface, few

Read More »

Rhizaspis armata

R. armata, 68 µm long, excl. spines – Laegieskamp Rhizaspis armata (Lauterborn, 1901) Dumack et al., 2021 Basionym: Pamphagus armatum Lauterborn, 1890 Diagnosis: Theca membranous,

Read More »

Rhizaspis spinosa

The original description with original drawings, Penard, 1890. Rhizaspis spinosa (Penard, 1890) Dumack et al., 2021 Basionym: Trinema spinosum Penard, 1890 Diagnosis: Theca membranous, ovoid

Read More »

Difflugia “pseudoclaviformis”

Difflugia “pseudoclaviformis”, front and side view, 424 µm Difflugia “pseudoclaviformis” Diagnosis: Shell pyriform, compressed, with a more or less pronounced aboral protuberance; shell composed of

Read More »

Difflugia from Lolo Pass

Shells 461-448 µm, stacked image. I found this large en remarkable shells in sediment of a small mountain lake near Lolo Pass, Montana USA. It differs

Read More »

Foraminifer drome

Unknown species, collected from the river Drôme, France, 2021 Unknown species September 2021, I found about ten specimens of an agglutinated foraminifer in a sample

Read More »

Cyclopyxis spec

Cyclopyxis spec., 168 µm Cyclopyxis spec. Diagnosis: Shell circular in ventral and dorsal view, more or less hemispherical in lateral view (height/diameter ≈ 0.5); lateral

Read More »

Difflugia fallax

Difflugia fallax, from Penard, 1902 Difflugia fallax Penard, 1890 Diagnosis: Shell hyaline or yellowish-greenish, black at low magnification, round in cross section, formed of a

Read More »