world of amoeboid organisms

Menu

Difflugia acuminata, D. pyriformis, D. labiosa, D. nodosa, D. urceolata, D. scalpellum, D. varians
 
From left to right: D. acuminata, D. pyriformis, D. labiosa, D. nodosa, D. urceolata, D. scalpellum, D. varians (all on scale)
 
 

Genus Difflugia Leclerc, 1815

Diagnosis: Testate amoeba with an agglutinate shell, with a terminal aperture that is round, oval, lobed or toothed, but never slit-like, sometimes with a collar or necklace but never with an internal diaphragm. The test or shell is composed of mineral particles, like quartz fragments, or diatom frustules, collectively called xenosomes, that are assembled on structured or sheet-like organic cement. All known Difflugia species acquire their xenosomes from their environment. Many select and arrange these xenosomes according to their size and shape in order to construct a shell with a morphology that is unique to that particular species. The nucleus is usually ovular, but in larger species vesicular. Some species are multinucluated. Some of the larger freshwater  species, living in deeper waters, contain green endosymbionts or zoochlorellae.

Type species: D. proteiformis Lamarck, 1816, but its nature is questionable (Ogden and Ellison, 1988).

Difflugia scheme

The drawing on the right shows the main characteristics of a Difflugia, in this case of D. capreolata. Its pseudopodia are finger-shaped and therefore called lobopodia. They can have different shapes: a stretching pseudopodium, b retracting, c branching and d broad so-called lamellipodium.

 

Remarks: Difflugia is the oldest and most species-rich genus of testate amoebae, with more than 300 species and a lot of subspecies and varieties. Therefore it is called an overcrowded genus (Meisterfeld). However many descriptions are inadequate, based on artificial criteria, one or few specimens, very small variations in size, shape, color and shell material or the lack of data on natural variation of shell characters. As the test is often opaque, cytoplasmic characters as shape and structure of the nucleus are rarely used. Identification at species level is for most species extremely difficult. The problem is not only which characters are distinguishable, but also which are diagnostic? Many times even slight deviations in shell shape have resulted in the establishment of new forms or species, regardless of the range of variability that individual Difflugia taxa may exhibit (Mazei and Warren, 2012). Gauthier-Lièvre and Thomas (1958) divided the genus into ten groups based on the morphology of the shell: lobed, collared, compressed, urceolate, globose, ovoid-globose, elongate, acute angled, horned  and pyriform. Mazei and Warren (2012, 2014) have classified species in species complexes, primarily based on two collections: Penard’s mounted microscope slides and Ogden’s SEM micrographs, both in the Natural History Museum in London.

Ecological conditions play an important role in shell morphology. Bobrov et al. (1999) observed a clear decrease of shell size moving from wet to dry conditions in three different species groups. And spined forms within the genera Euglypha and Placocista consistently occurred in wetter habitats whereas spineless forms, or those with short spines, were more prevalent in drier habitats. They concluded that, in order to maximize the ecological indicator value of the assemblages recorded, identifications should be made at the lowest taxonomic rank possible within these groups.
Difflugia species inhabit very diverse habitats. Many species are common in freshwater sediments or between water plants; others are planktonic with a benthic phase during winter; some live in dry mosses and soil. Lakes of different trophic status (eutrophic, dystrophic or oligotrophic) have characteristic dominant Difflugia species.

Feeding: mainly algae and fungi. Small species like D. minuta or D.  pulex can use bacteria too.

 

 

Recent posts

Yogsothoth knorrus

Yogsothoth knorrus, after Shishkin and Zlatogursky, 2018 Yogsothoth knorrus Shishkin and Zlatogursky, 2018 Diagnosis: Individual cells in colony have a diameter of 5.53-13.26 µm; they

Read More »

Yogsothothidae

Yogsothoth carteri, from Shishkin and Zlatogursky, 2018 Yogsothothidae  Shishkin and Zlatogursky, 2018 Diagnosis: Centrohelids covered with two types of tangentially-oriented plate-scales, having a different morphology.

Read More »

Acanthocystis dürrschmidtidae

A. dürrschmidtidae – after Wujek, 2003 Acanthocystis dürrschmidtidae  Wujek, 2003 Diagnosis: Cells 35-40 µm (based on a whole mount). Periplast comprising scales of two types, plate

Read More »

Centroplasthelida

Centroplasthelida Febvre-Chevalier and Febvre, 1984   Diagnosis: Phagotrophic and non-photosynthetic protists with one large spherical or near spherical centrosome at the center of the cell

Read More »

Pterocystida

  Pterocystida Cavalier-Smith and Heyden, 2007 stat. n.   Phylogenetic diagnosis: The least inclusive clade, containing Pterocystis devonica, Raphidiophrys heterophryoidea and Choanocystis curvata, but not Acanthocystis

Read More »

Panacanthocystida

Panacanthocystida Shishkin et Zlatogursky, 2018   Diagnosis: Centrohelids usually covered with siliceous scales or with organic spicules: scale-bearing species with both inner plate-scales and outer

Read More »