world of amoeboid organisms

Menu

Left: ultra-structure of a kinetocyst of Raphidiophrys contractilis); right: two kinetocysts in an axopodium.

Kinetocysts In centrohelid heliozoa, extrusomes are called kinetocysts, and are present in close association with the plasma membrane of axopodia. A kinetocyst is an extrusive organelle that discharges its contents upon food capture. The posterior part of a discharged kinetocyst is always attached to the plasma membrane of the heliozoon, while the anterior end is directed towards the prey, often making close contact with a food organism. This association possibly provides a cell surface scaffold that aids in extension of pseudopodia during formation of the food cup. A kinetocyst is a globular organelle that measures about 0.4 µm in height and 0.3 µm in width, and is surrounded by a membrane. It contains a bipartite central element (core) enclosed by a jacket of less electron dense material with fine striations, most likely being composed of stacked disks. The central core and the jacket are covered with a mushroom-shaped cap structure that is associated with the surrounding membrane at its tapered edges. Filamentous antennae are located outside the plasma membrane with apparent structural connection to the central core. During prey capture, kinetocysts expel some material towards prey organisms. After discharge, the basal part of the kinetocyst keeps its association with the surrounding membrane, which, as a result of exocytosis of the kinetocyst, becomes incorporated into the plasma membrane. The jacket of discharged kinetocysts spread out and transform into a much less distinct structure, while the appearance of the central core remains unchanged. The distal end of the core is connected to or fused with the cell surface of the prey. Reference: Sakaguchi, M., Suzaki, T., Kamal Khan, S.M.M. and Hausmann, K. (2002). Food capture by kinetocysts in the heliozoon Raphidiophrys contractilis. Europ. J. Protistol. 37, 453–458.
Recent posts

Spiculophrys

Genus Spiculophrys Zlatogursky, 2016 Diagnosis: Centrohelids lacking silica scales but with numerous thin, pointed organic (without any traces of silica) scales tapering towards acute apices. 18S

Read More »

Acanthocystis drakena

From Zlatogursky, 2016 Acanthocystis drakena Zlatogursky, 2016 Diagnosis: Cells are 21.1-30.5 µm (ca. 26.7) in diameter. Cell is covered with oval plate-scales having a margin

Read More »

Choanocystis symna

From Zlatogursky, 2014 Choanocystis symna Zlatogursky, 2014 Diagnosis: Cell body ca. 6.7 µm in diameter. Axopodia three–five times longer than a cell diameter. Plate-scales dumbbell-shaped

Read More »

Acanthocystis costata

From Zlatogursky, 2014 Acanthocystis costata Zlatogursky, 2014 Diagnosis: Cell body ca 9.5 µm in diameter. Axopodia 2–3 times longer than cell diameter. Length of spine-scales

Read More »

Kinetocyst

Left: ultra-structure of a kinetocyst of Raphidiophrys contractilis); right: two kinetocysts in an axopodium. Kinetocysts In centrohelid heliozoa, extrusomes are called kinetocysts, and are present

Read More »

Yogsothoth carteri

Yogsothoth carteri, after Shishkin and Zlatogursky, 2018 Yogsothoth carteri Shishkin and Zlatogursky, 2018 Diagnosis: Individual cells in a colony have a diameter of 9.7-15.2 µm;

Read More »